Model Database
Pre-computed PeakWeights analysis for top open-source LLMs in 2026.
Analyzed Models
| Model | Params | FP16 | 4-bit | Protected | Recovery | K | Type | Download |
|---|---|---|---|---|---|---|---|---|
| Qwen2.5-7B Alibaba | 7.6B | 10.62 | 11.51 | 10.63 | 99% | 50 | MLP | .pwi |
| Mistral-7B-v0.3 Mistral AI | 7.2B | 13.44 | 13.8 | 13.58 | 61% | 100 | lm_head | .pwi |
| SmolLM2-1.7B HuggingFace | 1.7B | 17.92 | 24.56 | 17.99 | 99% | 50 | MLP | .pwi |
| DeepSeek-R1-Distill-Qwen-7B DeepSeek | 7.6B | 70.73 | 73.52 | 70.91 | 93% | 50 | MLP | .pwi |
| Phi-3-mini Microsoft | 3.8B | 11.65 | 12.67 | 11.68 | 97% | 50 | MLP | .pwi |
Perplexity measured on WikiText-103. Recovery at K=50 protected weights.
Top 25 Models (Analysis Pending)
Run locally with:peakweights MODEL_ID --output weights.pwi
| Model | Organization | Parameters | Architecture | License | Link |
|---|---|---|---|---|---|
| DeepSeek-V3 | DeepSeek | 671B (37B active) | MoE | MIT | View |
| DeepSeek-R1 | DeepSeek | 671B (37B active) | MoE | MIT | View |
| Qwen3-235B-A22B | Alibaba | 235B (22B active) | MoE | Qwen License | View |
| Llama 4 Maverick | Meta | 400B (17B active) | MoE | Llama 4 License | View |
| Llama 4 Scout | Meta | 109B (17B active) | MoE | Llama 4 License | View |
| Qwen2.5-72B-Instruct | Alibaba | 72B | Dense Transformer | Qwen License | View |
| Llama-3.3-70B-Instruct | Meta | 70B | Dense Transformer | Llama 3.3 License | View |
| DeepSeek-R1-Distill-Llama-70B | DeepSeek | 70B | Dense Transformer | MIT | View |
| Mixtral-8x22B-Instruct-v0.1 | Mistral AI | 141B (39B active) | MoE | Apache 2.0 | View |
| Qwen2.5-14B-Instruct | Alibaba | 14B | Dense Transformer | Apache 2.0 | View |
| Qwen2.5-7B-Instruct | Alibaba | 7B | Dense Transformer | Apache 2.0 | View |
| DeepSeek-R1-Distill-Qwen-7B | DeepSeek | 7B | Dense Transformer | MIT | View |
| Mistral-7B-Instruct-v0.3 | Mistral AI | 7B | Dense Transformer | Apache 2.0 | View |
| Gemma-2-9B-it | 9B | Dense Transformer | Gemma License | View | |
| Gemma-2-27B-it | 27B | Dense Transformer | Gemma License | View | |
| Phi-4 | Microsoft | 14B | Dense Transformer | MIT | View |
| Qwen2.5-Coder-32B-Instruct | Alibaba | 32B | Dense Transformer | Apache 2.0 | View |
| Codestral-22B-v0.1 | Mistral AI | 22B | Dense Transformer | MNPL | View |
| DeepSeek-Coder-V2-Instruct | DeepSeek | 236B (21B active) | MoE | MIT | View |
| SmolLM2-1.7B-Instruct | HuggingFace | 1.7B | Dense Transformer | Apache 2.0 | View |
| Qwen2.5-3B-Instruct | Alibaba | 3B | Dense Transformer | Apache 2.0 | View |
| Phi-3.5-mini-instruct | Microsoft | 3.8B | Dense Transformer | MIT | View |
| Gemma-2-2B-it | 2B | Dense Transformer | Gemma License | View | |
| MiMo-V2-Flash | Xiaomi | 309B (15B active) | MoE | Apache 2.0 | View |
| Command R+ | Cohere | 104B | Dense Transformer | CC-BY-NC | View |
| OLMo-2-13B-Instruct | AI2 | 13B | Dense Transformer | Apache 2.0 | View |
Run your own analysis
Analyze any HuggingFace model with the CLI or Python API.
CLI
pip install peakweights # Analyze model peakweights Qwen/Qwen2.5-7B \ --top_k 50 \ --output weights.pwi
Python
from peakweights import find, save critical = find( "Qwen/Qwen2.5-7B", k=50, device="cuda" ) save(critical, "weights.pwi")